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The third fundemental problem of Prandtl's lifting line is extended
to the case of a finite number of accessory conditions and the solution

is given. Three examples are given demonstrating the practical occur-—

rence of such problemss
1. PRESENTATION OF THE PROBLEM

In der Tragflugeltheory I of "Vier Abhandlungen"l' L. Prandtl gives
as the third fundamental problem the following minimum problem (on p. 28)
"The total 1lift and wingspan are given and so are p and v; the dis—
~ tribution of 1ift over the span such that the drag is minimum is sought.,"
With help from the formula stated in the previously cited book

(p. 27) the mathematical statement of the problem in which a coordinate

L. Prandtl and A, Betz: Vier Abhandlungen zur Hydrodynamik und Aero—
dynamik. Neudruck aus den Verhandlungen des III. Internationalen
Mathematiker — Kongresses zu Heidelberg und aus den Nachtrichten des
Gesellschaft der Wessenschafton zu Gottingen 1927.

; LiPRARY COFY

fo we ccturnew o the Lime y 2l
‘ Aceo-s Aaronavtica Laooeenry
o Lavat Advisory Conmittee
tor Aeronautics
Meffett Field, Calit.




-2 -

gsystem such that the wing extends from +1 to -1 is used 1s2

Lot odily) dy 1
w(x) e f-l ¥y (1)

where I(-l) =T(+1) =0 (here I(x) 1is the local 1lift density, w(x)
is the induced downwash at the point x on the wing). The function
I(x) may be defined in the interval (+1, —1) such that
fl r(x) w(x) ax (2)
-1
becomes a minimum under the associated condition
1
f I(x) dx = A (3)
-1
(A = arbitrary total lift).

This statement of the problem hasbeen extended by M. Munk® to the
.case of the 1ift arbitrarily directed and distributed in space, and
vv_solved generally.

One can also generalize the above minimum problem to another kind
in which instead of the condition (3) another — and perhaps geveral -
side conditions are prescribed., Three examples will make this clear,

(a) A flying airfoil shall, by use of a small aileron deflection,
be in a flat curve. What form must the 1lift distribution due to the

incremental aileron deflection combined with the symmetrical distribution

2By the symbol f shall be understood the Cauchy principle part of the
integral.

SM. Munk: Isoperimetriche Aufgaben aus der Theory des Fluges.
Tnaugural-Dissertation. Gottingen 1919,




have ir oricr that the increase in induced drag shall remain as amall as
possible? If one knows this distribution then one cean approximate it
with a suitable control-surface shape to eliminate so much aileron deflec—
tion loss, The question therefore becomes: sought is that distribution

of 1ift which makes the induced drag (2) a minimum if the rolling moment

1
f x I(x) dx (%)
-1

has a prescribed value, The use of equation (1) is exactly correct only
in the first instant of the aileron deflection, as long as only small
turning and rolling motions exist, since only them are the trailing
vortex lines straight, Novertheless, one can still apply the solution
of the formulated problem as an approximate solution for small turning
and rolling velocities,

Another example which leads to the same problem, and in which these
difficulties do not appear was communicated to me in a friendly manner
by Prof., Dr., Prandtl. It is this, the question of the 1lift distribution
of least drag for a wing with eccentrically applied load generated by a
rolling moment,

(b) The solution of the third fundamental problem of Prandtl is

written (see (1) page 32) in the case of the above formulation:
I'(x) = ng- J1-x2

that is, the 1lift is distributed in' a kind of half-ellipse over the
span (for example, the solid line in figure 1). If one now changes

I'(x) in the manner of the broken line where A in (3) retains its



value, thea it will change the induced drag only slightly (in the

neighborhood of its minimum). The bending moment about the wing root

2
f x T(x) dx
[o]

which for symmetrical 1ift distributions can be replaced by
1
u/\ lx| T(x) ax (5)
-1
would, however, become smaller (if a factor 1/2 1is neglected).
For a wing in free flight the following is significant: owing to
the diminishing loading the wing can be built lighter., Since, however,
in stationary horizontal flight 1ift and weight are equal, this means

that the total 1ift in (3) becomes smaller.

r(x) -

Fig. 1 Fig. 2
If one replaces I'(x) by A.I(x) then one varies 1lift (3) and
bending moment (5) proportional to X\, while the induced drag 1s propor-—
tional to A2. One will also, with a l1ift distribution which at the
wingtips has somewhat smaller values than the elliptic distribution with
equal 1ift, expect somewhat better drag characteristics. It is true

it must be noted, that the dependence of the total loading on the bending
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moment in he case of the usual wing construction is very slight, so
that the effect described above is very amall,

This consideration leads to the following problem statement: it
shall be to make the drag (2) a minimum under the two conditions that
1ift (3) and bending moment (5) have prescribed values.

(¢) If one considers a wing that is curved in the direction of
flight (see figure 2), then in the case of the third fundamental problem
of wing theory* the pitching moment as well as the total 1ift would be
held constant. One can now require that the pitching moment shall
result exclusively from the 1lifting force on the wing, (Pitch stabili-
._zation by means of warped wings as in the flight of birds,) Let h(x)
be the distance from the x-axis +to the line of centera of pressure

(the broken line in figure 2). Then state the requirement that

fl n(x) Mx) dx = M (6)
-1

(pitching moment prescribed equal to M) shall hold and the above
i:roblem reads: the lift distribution TI'(x) 1s sought such that (2)
shall be a minimum under the conditions (3) and (6). It may be stated
t::ha’o in the general case an arbitrarily shaped wing with line of centers
c;f pressure not coincident with the forward aerodynamic centers in the

two-dimensional problem (T/4 line) will be given, The problem of

4Indeed (see (1) page 25) the illustration of the lifting line cannot
be applied in this case, as M, Munk((3) page 21) has nevertheless
shown 1t 1s sufficient in the case of drag considerations to calculate
only the two—dimensional problem of a wing not curved in the direction
of flight, TI'(x) is consequently the projection of the 1lift on aplane
perpendicular+te the line of flight,
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determining this line for an arbitrarily prescribed wing area involves
great difficulty and as far as I know 1t has not up to the present been
gsolved, One can, nevertheless, approximate the line of centers of
pressure by the T/h line as long as the wing does npt vary too much
from a flat wing,

It is natural now, on the basis of this example, to extend the
above formulated problem to finitely many prescribed subsidiary condi-
tions which are linear in I{x). One seeks to determine T'(x) in the

interval (-1, 1) such that
1
f I'(x) w(x) ax (2)
-1

will be a minimum under the N side conditions

fl D(x) bp(x) ax = Ay (n=l, . . . , ¥) (7)
~1

‘T(-1) = I'(+1) = 0 Buy(x) and A, arbitrarily prescribed, naturally
for Ay =0 only bm(x)=0 1s allowable for N =1, hy(x) = 1,

Ay = A the L. Prandtl formulated problem follows as a particular case
Just as can the examples a, b, and c be obtained by analogous speciali-

zatilon,
2. TRANSFORMATION OF THE PROBLEM

By mathematical manipulation of the problem the following trans—

formations will be undertaken:



let

X =co8 8, y=cos t

hw(x) W1=x2 = f(s), I'(x) = z(s)

end use the notation h (x) ~1-x2 = hy(e), (n=1, . . ., N).

there results® from (1), (2) (neglecting a factor 1/4)

n
£(s) = l\fr dz(t) sin s at
TJo

dt' cos t — cos s

n

&/p z(s)f(s) ds
o

fﬂ 2(s)h,(s) ds = An  (n=1, . . . , N)
0

In the case of known f(s) (1a) is a Fredholm integral equation

first kind, Its solution is known to bef

zgsg pr £(t) sin t at

cos s —cos t

where by integration there results

i sin ——
z(s) = ;\/n f(t) log ——2 gt
*Jo

sin |2=%

Using these

(8)

S5The assumptions under which the integrals and infinite series exist and
under which the applied transformations (interchange of order of inte—
gration, interchange of integration and summation) are allowed, will
be considered in a detailed work which will appear shortly under the
title "Solutions of Some Special Minimum Problems" in the Math. Zeit,
Moreover a second class of subsidiary conditions will be taken into
consideration. Addition by the referee: It has appeared in the

meantime in the Math. Zeig,, Bd. 53 (1950) pages 21-52,

8see perhaps K. Schroder: Uber eine Integralgleichung erstn: Art der
Tragflugeltheory. Sitzungs—berichte der Preussischen Akademie der

Wissenschaften XXX (1938)




For simplification write

sin
.J;log———z_..

and place (8) in (2a) and (7a), giving

bi4 n
f f £(s)£(t) S(s,t) ds dt (2b)
(o] (o]

b4 b4
f f £(s)hy(t) S(s,t) ds dt = Ay
o (o]
(n‘:l} « o v N) (o)

Since from (la) and (8) the functions z(s) and f(s) are clearly
dependent on each other one can also regard f£(s) as the unknown.

With this the problem to be solved is: determine f£(s) in the interval
(0,n) such that (2a) will be a minimum under the associated condition (7b).

For further simplification the following notation will be introduced:

T b1g
(£,8) = f f £(s)a(t) S(s,t) ds at (9)
(o] (o]

With the representation”’

0
=2 1
S(s,t) - }; 5 sin ns sin nt
n=1l

valid for 0 <s, t <n, s #t, it follows from (9) that

7See, for example, G. Hammel, Integralgleichungen page 20, Berlin 1938
by S. Springer; also K. Jaeckel, Ermittlung einer Reihen”arstellung
des Kernes 1n r in elliptichen Koordinaten, ZAMM, Bd. 30 (1950)
page 186. Formula (16)




" f(s)g(t) S(s,t) ds 4t

=% i %{j:r f(s) sin nsds} {fﬂ g(t) sin ntdt}
0

. n=1
(f,8) =3 i

n=1

A
g
&

n

o,

o

or

Bl

ag b, {10)

with the Fourier sine coefficients
T nt

Ap = % \/P f(s) sin nsds, b, = % \/p g(t) sin nt at
o )

(n=1, 2, . L) L] )
. From (9) and (10), and since S{s,;t) = S(t,s) (f,g) possesses the

following properties

(a) (af,g) = a(f,g) (a = real number) 1
(v) (£,8) = (8,f)
(¢) (f+g,h) = (f,h) + (g,h)

() (£,£) >0 for £(s) # 0

. One also has the problem of finding a function f(s) in the
interval (0,x) such that
(£,f) = min,
holds under the N subsidiary conditions
(fohy) =A, (p=l, . . ., N) (12)

Here (f,g) is defined by (9) and has the properties (11)
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3. SOLUTION OF THE PROBLEM

If the functions hp(s) are linearly dependent, then either there
are superfluous conditions in (12), or they are contradicted among them—
selves, and they are generally not fulfilled.

Assumption: The functions hn(s) are linearly independent, the
real numbers Ap (n=l, . . . , N) are arbitrarily chosen.

Contention: Then there is exactly one solution f'(s) of the

2bove minimum problem and this solution has the form
N :
£1(s) = Z Ap hy's)
n=1
with uniquely determined numbers Ap.

Proof: With the orthonormalization process of E. Schmidt one can

find functions

n

, |
n=l - n=1: [ ] [ L[] ¥ N)
such that
(Hp-Hy = Cpyp = 1 for m=n
0 for m#n

When these equations are inverted the following forms result

h, (s) = szdmﬁ Br(s) | (4yn#0; n=l, . . ., N)
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Now let N

£1(s) = Z Cafin(s)

n=1

With real coefficients Cpy undetermined for the present, and obtain

with (11)
\' N r
(f',hr) = Z Cu(Hn,hy) = Z Cn Z dn, (Hp,Fp)
n=1 n=1 m=1
N r r
v--’ .
= Z‘ Cn Z Mr enxn. = Z Cn d'nl'
n=1 m=1 n=1

for r=l’ * L] .9 N

r
Now, if I Cpdpy = Ay (r=1, . . . , N) shall hold, then the Cp are
n=1 '

clearly determined. With the numbers thus chosen ff fulfills the

conditicns (12), furthermore f'(s) obtains the general form

N N
£1(e) = ) Calluls) = ) Ca ) Cosha(s)
=1 mn=1
N N N
= Z hu(s) Z CpCom = z &t n(s)
n=1 m=n n=1

It remains to show that f' also makes (f,f) a minimum. Now an

arbitrary function f(s) can always be written in the form

f(s) = £'(s) + k(8) (namely with k(s) = f(s) — £'(a))



Then if

(f,hyg)

(£14,h0) = (21,50 + (k,h)

Ap + (k,hp) (n=1, . . ., N)

f(s) satisfies conditions (12) exactly, if

(k,hy) =0 forn=l, . . ., N

For the totality of functions f(s) which fulfill the condi-

tions (12) the following holds, according to (11)

(£,f) = (£'+k,f'+k) = (£',f') + 2(f',k) + (k,k)
N

(£r,£') + 2 z ap(hpk) + (k,k)

n=1

| (£,2') + (k,k) 2 (£',1')

where the equality sign holds only for k(s) = O. The uniqueness of
the coefficients aﬁ follow with (11d) from the linear independence
of the functions hp(s). Therewith the contention is proved.

If one returns to the original notation one finds the following

conclusions, -
L, CONCLUSION

The functions by(x) and the real numbers Ap (n=l, . . ., N)
have given arbitrary values, The function TI(x) shall be so defined
in the interval — 1< x< + 1 that I(-1) = I'(+1) = 0 and that under
the substitution

Tx dy =x~y
1

w(x) = 1 Jpl dr(y) dy (1)
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the expression

fl r(x)w(x) dx (2)

-1
is minimized under the subsidiary conditions
1
f r(x)hg(x)dx = Ag (n=1, 2, . « . , N) (7)
-1
If a function I'(x) is given generally, such that the N sub-
sidiary conditions are satisfied, then this minimum problem has exactly

one gsolution, which assumes the form

N
P(x) = Z ap fl hy(y) log
-1

n=1

1-xy+ o/ (1-%2) (152)
X~y

dy

with real coefficients &,. If the functions hn(x) are linearly
independent then the minimum problem always has a solution and the

coefficients are uniquely determined,
5. APPLICATION

In the following table some simple functions h(x) are related to

the appropriate function

1
= 1
I f_l h(y) log

lxy+ ¥ (I2x2) (1=33) | 4
X~y
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h(x)
1 1t A/l-x2
X -’25 x l-x2
x2 -(’,;‘ (2x2+1) AI=x2
x® -gx(2x2+l) 12
1+ V1=
[ 1x>0 ox log —————
| x|
t— 1x<0
1+ N2
{x{ x2 log +| , X + f1-x2
x|
x |x| 2<x3 log +| ..|1-x2 + X h/i~x2>
X
x2 x|

lzo<xg1l

0~1<x<x0

Thereby one finds for the first pair of examples stated at the

outset the solutions:

-%é-<6x4 log —l-f'—-—-———— |1—-—x2 + (6x2+1) Vl—x2>
x

1 - xox + a/(1=x02)(1—=x2)
XO~X

(x0—x) log

+ f1=x2 cos™l x0
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Subsidiary Condition Solution
1 8R
(a) f P(x) xdx = R rx) = B x JiE
-l
N
1 2A
) f I(x) dx = A r(x) =3 (—— - n) o 1-x2
n
1 1 +4//1—x2
f I(x) |x| &x = H +3 <3H'—£§?- XEIog_—F‘Ti
-1

/

In figure 3 this solution of example A is drawn. Figure 4 shows
several curves from the many solutions of example (b) for A = Const.,
H variable (for 3nxH = LA the half elipse is seen to be a special case
of (b)).

. I'(x) r(x)

o drmr-,

i SO o /¢4 TN
a " ’ ::L*ij§¥§:x
,—l. e _._/. M X /% — \\
. o l /// §\
o <

Fig. 3 to example (a) Fig. 4 to example (b)



